1,189 research outputs found

    DIS3L2: Unveiling a New Player in Tumorigenesis, with a Key Role in Colorectal Cancer

    Get PDF
    DIS3L2 is a 3’-5’ exoribonuclease that recognizes and degrades uridylated transcripts in an exosome-independent manner and participates in several RNA degradation pathways, such as the nonsense-mediated mRNA decay, or the surveillance of aberrant structured non-coding RNAs. Although some studies have linked DIS3L2 to tumorigenesis and cancer-related processes, its exact role in the development and progression of cancer has remained unclear since the discovery of DIS3L2's ribonuclease activity a decade ago. While some authors have reported evidence of a tumor suppressor role for this exoribonuclease, other studies have shown DIS3L2 as a driver of tumorigenesis. Although differences in tissue type and methodologic approaches may somewhat account for the opposing findings, a recent study from our group further supports a pro-tumorigenic role for DIS3L2, this time in promoting colorectal cancer (CRC) progression. Indeed, proper DIS3L2 expression was proven essential to maintain key tumorigenic properties in CRC cells, including cell proliferation and invasion. Here, we summarize the current state of knowledge regarding the impact of DIS3L2 in cancer, namely in colorectal cancer. The collected data unveils DIS3L2 as a novel putative therapeutic target in cancer that warrants further investigation.This work was supported by Instituto Nacional de SaĂșde Doutor Ricardo Jorge and Fundação para a CiĂȘncia e a Tecnologia (FCT) [UID/MULTI/04046/2019 Research Unit Grant (to BioISI)]. Juan F. GarcĂ­a-Moreno was recipient of a fellowship from BioSys PhD programme (PD/BD/142898/2018)info:eu-repo/semantics/publishedVersio

    Nonsense-mediated RNA decay and its bipolar function in cancer

    Get PDF
    ReviewNonsense-mediated decay (NMD) was first described as a quality-control mechanism that targets and rapidly degrades aberrant mRNAs carrying premature termination codons (PTCs). However, it was found that NMD also degrades a significant number of normal transcripts, thus arising as a mechanism of gene expression regulation. Based on these important functions, NMD regulates several biological processes and is involved in the pathophysiology of a plethora of human genetic diseases, including cancer. The present review aims to discuss the paradoxical, pro- and anti-tumorigenic roles of NMD, and how cancer cells have exploited both functions to potentiate the disease. Considering recent genetic and bioinformatic studies, we also provide a comprehensive overview of the present knowledge of the advantages and disadvantages of different NMD modulation-based approaches in cancer therapy, reflecting on the challenges imposed by the complexity of this disease. Furthermore, we discuss significant advances in the recent years providing new perspectives on the implications of aberrant NMD-escaping frameshifted transcripts in personalized immunotherapy design and predictive biomarker optimization. A better understanding of how NMD differentially impacts tumor cells according to their own genetic identity will certainly allow for the application of novel and more effective personalized treatments in the near future.Gonçalo Nogueira, Rafael Fernandes, and Juan Fernandez García-Moreno are recipients of a fellowship from BioSys PhD programme PD65-2012 (SFRH/PD/BD/130959/2017, SFRH/BD/114392/2016 and SFRH/PD/BD/142898/2018, respectively) from FCT. This work was partially supported by UID/MULTI/04046/2019 Research Unit grant (to BioISI).info:eu-repo/semantics/publishedVersio

    Some asymptotics for Sobolev orthogonal polynomials involving Gegenbauer weights

    Get PDF
    AbstractWe consider the Sobolev inner product 〈f,g〉=∫−11f(x)g(x)(1−x2)α−12dx+∫fâ€Č(x)gâ€Č(x)dψ(x),α>−12, where dψ is a measure involving a Gegenbauer weight and with mass points outside the interval (−1,1). We study the asymptotic behaviour of the polynomials which are orthogonal with respect to this inner product. We obtain the asymptotics of the largest zeros of these polynomials via a Mehler–Heine type formula. These results are illustrated with some numerical experiments

    Traffic Optimization Through Waiting Prediction and Evolutive Algorithms

    Get PDF
    Traffic optimization systems require optimization procedures to optimize traffic light timing settings in order to improve pedestrian and vehicle mobility. Traffic simulators allow obtaining accurate estimates of traffic behavior by applying different timing configurations, but require considerable computational time to perform validation tests. For this reason, this project proposes the development of traffic optimizations based on the estimation of vehicle waiting times through the use of different prediction techniques and the use of this estimation to subsequently apply evolutionary algorithms that allow the optimizations to be carried out. The combination of these two techniques leads to a considerable reduction in calculation time, which makes it possible to apply this system at runtime. The tests have been carried out on a real traffic junction on which different traffic volumes have been applied to analyze the performance of the system

    Asymptotics for Jacobi–Sobolev orthogonal polynomials associated with non-coherent pairs of measures

    Get PDF
    AbstractWe consider the Sobolev inner product 〈f,g〉=∫−11f(x)g(x)dψ(α,ÎČ)(x)+∫fâ€Č(x)gâ€Č(x)dψ(x), where dψ(α,ÎČ)(x)=(1−x)α(1+x)ÎČdx with α,ÎČ>−1, and ψ is a measure involving a rational modification of a Jacobi weight and with a mass point outside the interval (−1,1). We study the asymptotic behaviour of the polynomials which are orthogonal with respect to this inner product on different regions of the complex plane. In fact, we obtain the outer and inner strong asymptotics for these polynomials as well as the Mehler–Heine asymptotics which allow us to obtain the asymptotics of the largest zeros of these polynomials. We also show that in a certain sense the above inner product is also equilibrated

    Intra-tumor heterogeneity in TP53 null high grade serous ovarian carcinoma progression

    Get PDF
    [Background]: High grade serous ovarian cancer is characterised by high initial response to chemotherapy but poor outcome in the long term due to acquired resistance. One of the main genetic features of this disease is TP53 mutation. The majority of TP53 mutated tumors harbor missense mutations in this gene, correlated with p53 accumulation. TP53 null tumors constitute a specific subgroup characterised by nonsense, frameshift or splice-site mutations associated to complete absence of p53 expression. Different studies show that this kind of tumors may have a worse prognosis than other TP53 mutated HGSC. [Methods]: In this study, we sought to characterise the intra-tumor heterogeneity of a TP53 null HGSC consisting of six primary tumor samples, two intra-pelvic and four extra-pelvic recurrences using exome sequencing and comparative genome hybridisation. [Results]: Significant heterogeneity was found among the different tumor samples, both at the mutational and copy number levels. Exome sequencing identified 102 variants, of which only 42 were common to all three samples; whereas 7 of the 18 copy number changes found by CGH analysis were presented in all samples. Sanger validation of 20 variants found by exome sequencing in additional regions of the primary tumor and the recurrence allowed us to establish a sequence of the tumor clonal evolution, identifying those populations that most likely gave rise to recurrences and genes potentially involved in this process, like GPNMB and TFDP1. Using functional annotation and network analysis, we identified those biological functions most significantly altered in this tumor. Remarkably, unexpected functions such as microtubule-based movement and lipid metabolism emerged as important for tumor development and progression, suggesting its potential interest as therapeutic targets. [Conclusions]: Altogether, our results shed light on the clonal evolution of the distinct tumor regions identifying the most aggressive subpopulations and at least some of the genes that may be implicated in its progression and recurrence, and highlights the importance of considering intra-tumor heterogeneity when carrying out genetic and genomic studies, especially when these are aimed to diagnostic procedures or to uncover possible therapeutic strategies.This work has been supported by grants from the AECC network-2012, TelemaratĂł 2013, Instituto de Salud Carlos III (ISCIII) (PI13/00132 and RETIC-RD12/0036/0007), GEIS award 2013, and by the Community of Madrid (S2010/BMD-2303). AM is a predoctoral student supported by FPU fellowship (Spanish Education Ministry). PGS is founded by postdoc contracts from the AECC Scientific Foundation.Peer Reviewe

    RepA-WH1 prionoid: Clues from bacteria on factors governing phase transitions in amyloidogenesis

    Get PDF
    10 p.-1 fig.In bacterial plasmids, Rep proteins initiate DNA replication by undergoing a structural transformation coupled to dimer dissociation. Amyloidogenesis of the ‘winged-helix’ N-terminal domain of RepA (WH1) is triggered in vitro upon binding to plasmid-specific DNA sequences, and occurs at the bacterial nucleoid in vivo. Amyloid fibers are made of distorted RepA-WH1 monomers that assemble as single or double intertwined tubular protofilaments. RepA-WH1 causes in E. coli an amyloid proteinopathy, which is transmissible from mother to daughter cells, but not infectious, and enables conformational imprinting in vitro and in vivo; i.e. RepA-WH1 is a ‘prionoid’. Microfluidics allow the assessment of the intracellular dynamics of RepA-WH1: bacterial lineages maintain two types (strains-like) of RepA-WH1 amyloids, either multiple compact cytotoxic particles or a single aggregate with the appearance of a fluidized hydrogel that it is mildly detrimental to growth. The Hsp70 chaperone DnaK governs the phase transition between both types of RepA-WH1 aggregates in vivo, thus modulating the vertical propagation of the prionoid. Engineering chimeras between the Sup35p/[PSI*] prion and RepA-WH1 generates [REP-PSI*], a synthetic prion exhibiting strong and weak phenotypic variants in yeast. These recent findings on a synthetic, self-contained bacterial prionoid illuminate central issues of protein amyloidogenesis.Research on RepA-WH1 amyloids at CIBCSIC is currently financed by Spanish MINECO grants BIO2012-30852 and CSD2009-00088.Peer reviewe

    DIS3L2 knockdown impairs key oncogenic properties of colorectal cancer cells via the mTOR signaling pathway

    Get PDF
    DIS3L2 degrades different types of RNAs in an exosome-independent manner including mRNAs and several types of non-coding RNAs. DIS3L2-mediated degradation is preceded by the addition of nontemplated uridines at the 3’end of its targets by the terminal uridylyl transferases 4 and 7. Most of the literature that concerns DIS3L2 characterizes its involvement in several RNA degradation pathways, however, there is some evidence that its dysregulated activity may contribute to cancer development. In the present study, we characterize the role of DIS3L2 in human colorectal cancer (CRC). Using the public RNA datasets from The Cancer Genome Atlas (TCGA), we found higher DIS3L2 mRNA levels in CRC tissues versus normal colonic samples as well as worse prognosis in patients with high DIS3L2 expression. In addition, our RNA deep-sequencing data revealed that knockdown (KD) of DIS3L2 induces a strong transcriptomic disturbance in SW480 CRC cells. Moreover, gene ontology (GO) analysis of significant upregulated transcripts displays enrichment in mRNAs encoding proteins involved in cell cycle regulation and cancer-related pathways, which guided us to evaluate which specific hallmarks of cancer are differentially regulated by DIS3L2. To do so, we employed four CRC cell lines (HCT116, SW480, Caco-2 and HT-29) differing in their mutational background and oncogenicity. We demonstrate that lack depletion of DIS3L2 results in reduced cell viability of highly oncogenic SW480 and HCT116 CRC cells, but had little or no impact in the more differentiated Caco-2 and HT-29 cells. Remarkably, the mTOR signaling pathway, crucial for cell survival and growth, is downregulated after DIS3L2 KD, whereas AZGP1, an mTOR pathway inhibitor, is upregulated. Furthermore, our results indicate that depletion of DIS3L2 disturbs metastasis-associated properties, such as cell migration and invasion, only in highly oncogenic CRC cells. Our work reveals for the first time a role for DIS3L2 in sustaining CRC cell proliferation and provides evidence that this ribonuclease is required to support the viability and invasive behavior of dedifferentiated CRC cells.This work was supported by Instituto Nacional de SaĂșde Doutor Ricardo Jorge and Fundação para a CiĂȘncia e a Tecnologia (FCT) [UID/MULTI/04046/2019 Research Unit Grant (to BioISI)]. Juan F. GarcĂ­a-Moreno and Paulo J. da Costa were recipients of a fellowship from BioSys PhD programme (SFRH/BD/52495/2014, and PD/BD/142898/2018, respectively).info:eu-repo/semantics/publishedVersio
    • 

    corecore